1. Stresses

At o. d. of Ring A:

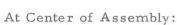
$$f_{t} = \frac{b^{2} p}{c^{2} - b^{2}} \left(1 + \frac{c^{2}}{r^{2}}\right)$$
$$= \frac{0.658^{2} (128,000)}{(\overline{3.50^{2}} - \overline{0.658^{2}})} \left(1 + \frac{\overline{3.50^{2}}}{\overline{3.50^{2}}}\right)$$
$$= 9340 \text{ psi}$$

At A-B Interface: $f_t = 11,000 \text{ psi}$

At B-C Interface: $f_r = 17,050 \text{ psi}$

At C-D Interface: $f_t = 34,000 \text{ psi}$

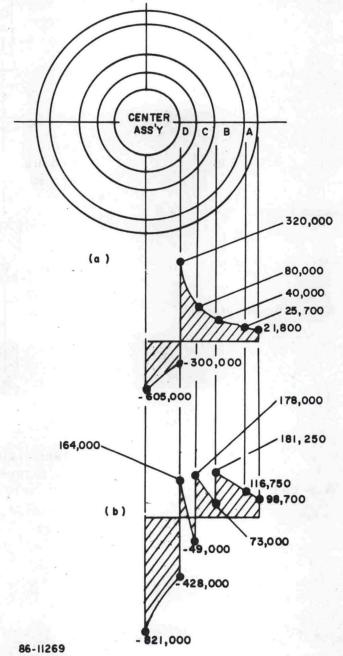
At D-Center Assembly Interface:


$$f_t = 137,000 \text{ psi}$$

$$f_{c} = \frac{p b^{2}}{b^{2} - a^{2}} \left(1 + \frac{a^{2}}{r^{2}}\right)$$

CENTER ASS'Y D С в Δ (a 137,000 a = 0 34,000 b = 0.658 17,050 c=3.50 (b) 11,000 9340* 128,000 - 25,6,000 (c) 96,000 96,000 91,050 -76,700 32,750 128,000 - 256,000

Figure A-4 STRESSES ENCOUNTERED DURING INSTALLATION OF CENTER ASSEMBLY INTO A, B, C AND D


= 128,000 psi


f_c = 2p = 256,000 psi

^{*}From the test data, there was a scatter of this value varying from 8120 to 9860 psi. Therefore, based on this test data, it is reasonable to assume that the calculated value closely approximates the test data.

Assuming Poisson's Ratio of 0.30 and a downward developed pressure of 1 x 10^6 psi, the internal radial pressure is calculated by p = 0.30 (1,000,000) = 300,000 psi. This yields Figure A-5 (a) which is $\frac{300}{128}$ times Figure A-4 (b).

The final stress distribution is shown by Figure A-5 (b). The effect of the taper is negligible as compared to stresses caused by the interference fits.

-74-